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Running is a popular and accessible form of aerobic exercise, significantly benefiting our health and wellness. By monitoring
a range of running parameters with wearable devices, runners can gain a deep understanding of their running behavior,
facilitating performance improvement in future runs. Among these parameters, breathing, which fuels our bodies with oxygen
and expels carbon dioxide, is crucial to improving the efficiency of running. While previous studies have made substantial
progress in measuring breathing rate, exploration of additional breathing monitoring during running is still lacking. In
this work, we fill this gap by presenting BreathPro, the first breathing mode monitoring system for running. It leverages
the in-ear microphone on earables to record breathing sounds and combines the out-ear microphone on the same device
to mitigate external noises, thereby enhancing the clarity of in-ear breathing sounds. BreathPro incorporates a suite of
well-designed signal processing and machine learning techniques to enable breathing mode detection with superior accuracy.
We implemented BreathPro as a smartphone application and demonstrated its energy-efficient and real-time execution.
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1 INTRODUCTION
Aerobic exercise is an essential component of a well-rounded fitness routine, offering a positive impact on
cardiovascular health, stamina, endurance, mental well-being, and overall physical fitness [36, 61]. Nowadays,
running has gained popularity as a preferred choice of aerobic exercise among individuals due to its simplicity,
accessibility, and affordability. Unlike other aerobic exercises that necessitate specialized equipment or facilities,
running only requires running shoes and a place to run. Statista Research Department’s 2022 report indicates
that approximately 50 million Americans (or 15% of the U.S. population) participate in some form of running or
jogging, and this figure is still increasing [5]. Recently, advancements in wearable technology, such as wristbands
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and wireless earbuds, have facilitated the automatic monitoring of various running parameters (e.g., pace, cadence,
intensity, heart rate (HR), and so on [12]). This technology enables a comprehensive assessment of running
activities, providing valuable insights for potential performance improvement [35, 38].

Existing studies have primarily measured the following three factors while running: 1) Location-related factors
such as velocity, orientation, position, step counts, stride frequency, and stride length, have been extensively
studied by leveraging in-the-pocket sensors [11, 13, 16, 24, 42, 50, 60], e.g., inertial measurement units (IMUs)
and the Global Positioning System (GPS); 2) Strike-related factors such as foot placement and focus, ground
reaction force, as well as force distribution, are mainly measured using multiple IMUs worn on the body [74, 75],
sensors in shoes [32, 71], and force platforms on grounds [58, 67]; 3) Physiology-related factors such as HR and
respiration rate (RR), can be monitored with chest-worn straps, like Polar [6] for HR monitoring, and Zephyr [7]
for both HR and RR monitoring. Although these methods are effective, they are invasive in nature. To this end,
hEARt [15] proposes to monitor HR while running using in-ear microphone audio from earables. RunBuddy [31]
employs both smartphones and headphones to monitor Locomotor Respiratory Coupling (LRC) during running,
which can then be utilized for respiration rate monitoring.

Although previous studies have achieved remarkable progress in running assessments through monitoring
various factors, breathing type (i.e., breathing using mouth or nose), which is highly correlated with the volume
of oxygen exchange and therefore affects the running performance [23, 40, 47], has not been investigated yet.
In this paper, we delve into additional breathing monitoring during running, and for the first time, introduce
the concept of breathing mode within the context of the human respiratory system, namely, the combination of
breathing type (including nose or mouth breathing) and breathing phase (including inspiration or expiration). In
detail, we identify four breathing modes: nasal inhalation (NI), nasal exhalation (NE), oral inhalation (OI), and oral
exhalation (OE). While individuals are capable of self-identifying their breathing mode, constant self-monitoring
can divert their attention from crucial factors such as surrounding pedestrians, traffic, posture, and pace. On the
contrary, automatic and continuous monitoring of breathing type not only alleviates the need for self-monitoring
but also offers an opportunity to guide runners in adopting proper breathing techniques for improved running
performance.
We investigate the feasibility of breathing mode detection by utilizing earables, a promising candidate for

this task due to the following considerations: 1) Earables are widely chosen companions by runners as they
provide entertainment and interaction features; 2) Their on-body location situates them in close proximity to
respiratory and cardiovascular systems, offering an ideal position for breath monitoring; 3) Previous studies have
demonstrated their ability to capture a variety of accurate and motion-resilient physiological parameters using
the onboard in-ear and out-ear microphones, such as HR [15, 17] and RR [62, 69]. Specifically, in-ear microphones
have been proven to reliably capture heart sounds [15, 17] and breathing sounds [30, 44] due to the occlusion
effect [63] that amplifies the low-frequency component of bone-conducted sounds. Out-ear microphones have
been shown to record breath sounds roughly during running, but they are also highly sensitive to capturing
ambient noise [31].

To this end, this paper proposes BreathPro, a portable and lightweight earable-based system for high-fidelity
breathing mode monitoring during running. We initially leverage in-ear microphones on earables as they
can capture both air- and bone-conducted sounds generated by respiration during running, as investigated in
Section 3.2. However, the following technical challenges need to be carefully addressed:

• The development of a machine learning (ML) based breathing mode classification model requires precisely
annotated data, namely, accurately segmented in-ear signals between inspiration and expiration. However,
the breathing signals collected from the in-ear microphone are considerably weak and span across wide
frequency ranges, making it challenging to discern the transitions of breathing phases in both time and
frequency domains. To resolve this issue, we leverage the ground truth signal collected near the nose to
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guide the segmentation of the in-ear signal for model training. During inference, the segmentation process
is eliminated through our innovative design of frame-based classification, and the performance is boosted
with the proposed high-quality frame selection scheme and post-processing.

• Our breathing mode classification model, which is trained using clean breathing sounds captured by in-ear
microphones in quiet environments, encounters considerable performance degradation when the user
runs in a noisy environment. To tackle this issue, we observe that external noise is first picked up by
the out-ear microphone, then modulated by the occluded ear canal, before finally being captured by the
in-ear microphone. Consequently, we propose to utilize the out-ear signal to diminish the in-ear noise.
This is achieved by estimating the residual noise inside the ear using the out-ear signal and subsequently
subtracting it from the noisy in-ear signal, yielding cleaner in-ear breathing sounds.

In summary, this paper makes the following contributions:

• To the best of our knowledge, BreathPro is the first wearable system that tracks runners’ breathing modes.
We contribute to the research community by introducing a new sensing application and encouraging future
research for performance improvement from both algorithmic and modality perspectives.

• We meticulously design a comprehensive suite of signal processing and machine learning techniques to
create BreathPro. Specifically, we introduce an innovative noise reduction method for in-ear audio sensing
by leveraging out-ear signals to attenuate in-ear noise, thereby improving the quality of in-ear breathing
sounds during running.

• Utilizing data collected from 25 participants, our results demonstrate that BreathPro achieves an accuracy
of 90.70% and 98.52% in classifying four breathing modes at the frame level and phase level, respectively.
This performance is sound even under a range of challenging conditions, such as varying intensities and
types of ambient noise and different inhalation and exhalation sequences.

• Our measurements on energy consumption and latency demonstrate the minimal overhead of BreathPro,
suggesting its efficient and real-time execution on smartphones accompanied by earables.

2 RELATED WORK
In this section, we overview related research in three categories: running monitoring systems, respiration
monitoring systems, and in-ear sensing applications.

2.1 Running Monitoring Systems
While there are many running monitoring systems, we focus this review on those that perform physiological
monitoring during running, such as HR [6, 15] and RR [7, 31, 73]. These have been tracked using chest-worn
straps, like Polar for HR monitoring [6] and Zephyr for both HR and RR monitoring [7]. While these methods are
efficient, they are also invasive. In response to this, hEARt [15] proposed monitoring HR during running with
in-ear microphone through leveraging the occlusion effect to enhance low-frequency bone-conducted sounds in
the ear canal and applying a deep learning-based motion artifact mitigation framework. RunBuddy [31] employed
a combination of a smartphone’s IMU and a headphone’s microphone to monitor LRC during running, which
indicates possible ratios between the stride and breathing frequencies and thus can be used for RR monitoring.
ER-Rhythm [73] also developed a method for monitoring LRC using RFID while running on a treadmill.

Our work aligns closely with the above works while delving deeper into the exploration of additional breathing
information, i.e., breathing mode, which provides valuable insights for managing a runner’s breathing, thereby
enhancing overall running performance.
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2.2 Respiration Monitoring Systems
2.2.1 Non-earables based Systems. Several works in the past have focused on using various on-body and off-body
sensors to monitor various aspects of human respiratory system. Acoustic signals are an intuitive method for
detecting respiration. By using microphones on masks [59] and smartphones[49], respiratory signals can be
captured for respiratory rate estimation. However, these methods require opportunistic placement (close to
mouth/nose) of the audio sensor, making it challenging to achieve seamless monitoring anytime and anywhere.
Chu et al. [21] developed a disposable respiration sensor that can be placed on the ribcage and abdomen to measure
the expansion and contraction during respiration. Zephyr [7] utilized a pressure sensor to measure the chest
movements during respiration to monitor RR and respiration volume. However, these on-body sensors can be
intrusive and uncomfortable for runners. This is particularly true for specialized chest bands that need to be tightly
fastened around the chest, potentially leading to discomfort, restricted free breathing, and limited movement
during running. Existing studies also employ body-worn photoplethysmography (PPG) and electrocardiography
(ECG) to capture heart signals and utilize respiratory sinus arrhythmia (RSA) for monitoring RR [19], which have
been leveraged by commercial products, such as Apple Watch [2] and Garmin [3].
Transitioning to off-body devices, a range of sensing modalities has been utilized for respiration monitoring.

Hu et al. [34] introduced a dual-mode imaging system that operates on both visible and long-wave infrared
wavelengths from RGB and thermal videos respectively, to non-invasively and unobtrusively measure RR and
respiration volume by capturing the temperature changes caused by respiration using a thermal camera. Massaroni
et al. [45] utilized a laptop’s integrated RGB camera and proposed a post-processing algorithm to capture the
chest movements incurred by respiration to monitor RR. Similar to capturing the minute movements caused by
respiration, Liu et al. [41] proposed to track RR during sleep by using off-the-shelf WiFi, through analyzing the
channel information in both time and frequency domains. However, camera-based solutions raise privacy concerns
and lack portability, while wireless-signals-based solutions also face limitations in portability. Additionally, these
approaches are specifically designed for stationary situations and are not suited for use during running.

2.2.2 Earable based Systems. Due to the close and fixed distance between human ears and mouth/nose, earable
is considered an advantageous commodity wearable for respiratory activity sensing. We group earable-based
breathing monitoring systems into two categories. The first category involves IMU-based breath activity detection
in a static environment. Rahman et al. [55] have introduced algorithms for estimating respiration rate during
resting positions, utilizing inertial sensors embedded in common earbuds to capture breath-incurred motions
and mitigate errors caused by passive and active head motion. The low-power accelerometer in the earbuds is
also employed to generate a set of breathing biomarkers, encompassing breathing rate, depth, and symmetry,
facilitating guided breathing exercises for users [54]. Similarly, Röddiger et al. [57] estimated respiration rate
by filtering respiration-related body motions at the ear using accelerometer and gyroscope data. However, this
inertial sensing approach heavily relies on underlying motion and is applicable only when the user is at rest.
The second category involves acoustic-based breathing rate estimation. Kumar et al. [39] collected data from the
microphone of a near-field headphone before, during, and after strenuous exercise, deploying a multi-task LSTM
network to estimate respiratory rate in varying background noise conditions. Ren et al. [56] utilize earbuds’
microphones for fine-grained sleep monitoring, with a focus on scenarios such as heavy breathing after exercise
or specific environments like sleep.
In summary, previous studies on respiration monitoring have predominantly concentrated on estimating

respiration rate and volume. The majority of these approaches are confined to stationary settings or involve
proxy sensor placement. Our work stands out as the first to explore the feasibility of breathing mode detection
under active scenarios using wearables.
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2.3 Other Audio-based In-ear Sensing Systems
Earphones, inherently equipped with speakers and microphones, have proven to be advantageous for various
in-ear sensing applications, including human-computer interaction (HCI) [43, 51], health monitoring [15, 20, 37],
and authentication procedures [27, 64, 70, 72]. For instance, Dong et al. [43] implemented OESense to facilitate
hand-to-face gesture interactions by harnessing an in-ear microphone to capture bone-conducted sounds, enabling
the recognition of various tapping positions on the face. Prakash et al. [51] proposed an approach for HCI by
using teeth actions, specifically tapping and sliding, which create detectable vibrations in the jaw and skull,
and produce vibratory signals detectable by earphones. Christofferson et al. [20] leveraged the internal and
external microphones presented in active noise-canceling earbuds to distinguish sounds associated with poor
or disordered sleep such as snoring, teeth grinding, and restless movements. Truong et al. [66] estimated blood
pressure by leveraging the distinct propagation times of sound and blood within the human body. They employed
both in-ear microphones and PPG to measure the vascular transit time (VTT), calculated as the time difference
between the S1 heart sound and the PPG upstroke in one pulse cycle. Jin et al. [37] developed a non-invasive
system for monitoring ear conditions by emitting a probing chirp and analyzing the recorded echoes evoked by
the chirp sound stimulus, which can detect three major hearing health conditions: ruptured eardrum, earwax
buildup and blockage, and otitis media. Ferlini et al. [27] proposed a gait-based authentication technique by
leveraging the low-frequency in-ear sounds generated by stepping motions while walking.

Compared to conventional out-ear microphones, the newly emerged in-ear microphone offers two advantages
for earable sensing: (1) by positioning the microphone inside the ear canal, the earbud shell naturally attenuates
external noises and therefore enhances the signal-to-noise ratio of the in-ear sensing signal, and (2) the sealing
of the ear canal opening creates the occlusion effect [63] that amplifies the low-frequency bone-conducted
sounds, thereby enabling the detection of various body sounds. All of the above in-ear sensing systems operate
independently yet intersect with our work. Our research serves as a valuable addition to the field of earable
sensing, further broadening the scope of in-ear sensing applications.

3 PRELIMINARY

3.1 Effect of Breathing Modes on Running
Respiration, the process of breathing to fuel our bodies with oxygen and getting rid of carbon dioxide [22], is
crucial for running as such intense activity consumes oxygen and produces wastes faster. During running, people
can breathe using their nose (refers to nasal breathing) or mouth (refers to oral breathing), or an alternation of
both. Nasal and oral breathing can lead to different physiological responses in the body [23, 47]. Specifically,
oral breathing during exercises at 60% of one’s aerobic capacity allows a greater volume of air to be utilized.
However, nasal breathing filters pollutants from the air and facilitates bronchial nitric oxide production, which
may positively influence exercise. Generally, nasal breathing is comfortable at lower exercise intensity, but at
35-41 L/min total ventilation (VE), individuals usually switch from breathing nasally to oral breathing [29, 40].
The selection of the best breathing mode during running also depends on factors such as exercise intensity,

environment temperature, and humidity [22, 25]. During intense running sessions, such as sprints or interval
training, oral breathing is preferred to maximize airflow and oxygen intake, supporting the increased energy
demands. On the other hand, nasal breathing can be beneficial during long-distance runs at a comfortable pace,
facilitating the regulation of airflow and ensuring a steady and controlled intake of oxygen. In hot and humid
environments, oral breathing aids in dissipating heat efficiently by facilitating greater airflow and faster cooling.
Conversely, nasal breathing helps warm and humidify the inhaled air in the nasal cavity, which is particularly
useful in cold weather [52].
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The automatic recognition of a runner’s breathing mode using earables can significantly enhance the effective-
ness of coaching during running1, leading to improved endurance and reduced fatigue. For instance, based on
factors such as run intensity, stage, and environmental conditions, real-time suggestions for optimal breathing
mode can be provided, without distracting the runner’s engagement by requiring manual focus on their breathing.
Post-run reports can analyze the breathing modes employed during the session, offering insights into potential
improvements. Additionally, a running assistant can automatically design a standard or personalized breathing
mode management scheme before each run and continuously track whether the runner adheres to it in real time.

Fig. 1. In-ear and out-ear spectrograms of two breathing phase combinations collected in quiet environments (a, b, d, e),
and a NINE combination from noisy environments (c, f). The breathing signals captured by in-ear microphones are more
pronounced, and more resilient to ambient noise.

3.2 Feasibility Exploration: In-ear vs. Out-ear Microphone
The above discussions have clearly shown the importance and benefits of monitoring runners’ breathing modes
during running. Unfortunately, there is no existing common wearable that can support such operations. In this
paper, we focus on earables (e.g., earphones), a highly-adopted wearable device in recent years, particularly
during exercises (e.g., running). Conventional earphones typically feature microphones positioned near the
outer shell, known as out-ear microphones, which are designed to capture air-conducted human voices for
communication purposes. Recent earphones equip additional microphones in the earphone housing, known as
in-ear microphones, that face inward to capture residual sounds in the ear canal for the purpose of active noise
cancellation. Next, we explore the feasibility of using the in-ear microphone to detect runners’ breathing modes,
motivated by recent works that demonstrate the capability of in-ear microphones to capture human-generated
vibrations/sounds through bone-conduction and occlusion effect [63].

We developed a prototype (details presented in Section 5.1) and collected some data with both the in-ear and
out-ear (for comparison purposes) microphones when a subject undergoes different breathing modes during
running. Figure 1 shows the spectrograms of the collected signals, which infer three promising findings. First, we
1Note that we mainly focus on the detection of breathing mode, while the subsequent coaching for running is out of the scope of this work.
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can observe from the upper row that different breathing modes (OI, OE, NI, NE) exhibit distinct characteristics
across frequencies (mainly from 500 Hz to 3000 Hz), showing the potential to classify them using the in-ear
signals. Second, comparing the first and second rows, the in-ear signal yields a higher signal-to-noise ratio (SNR)
as it captures bone-conducted breathing sounds, while the breathing cycles can be barely noticed in the out-ear
signal due to the high air attenuation. Third, from the last column, when external noise (around 60 dB) exists,
both in-ear and out-ear signals are polluted, although the out-ear signal encounters a stronger impact in high
frequencies (>2000 Hz). This implies that breathing mode detection with the in-ear microphone is still vulnerable
to external noise and proper noise removal techniques should be applied.
The above studies demonstrated the feasibility of using the in-ear microphones to capture and distinguish

runners’ breathing modes, and identified potential factors that might affect the detection performance. Next, we
present our design to realize the idea and optimize the performance under different scenarios.

4 SYSTEM DESIGN

4.1 Overview
The proposed BreathPro achieves accurate and robust detection of breathing modes under various running
scenarios by opportunistically tapping on both in-ear and out-ear microphones. While the in-ear microphone
mainly captures bone-conducted sounds generated by respiration, the out-ear microphone can be utilized to
record ambient sound for subsequent noise reduction. Figure 2 shows the BreathPro methodological pipeline,
consisting of the following phases:

500 Hz
 HPF

Breathing 
Signal

Frame-level
Segmentation

Feature
Extraction

Frame-level
Breathing Mode

Classification

Moving Average
Correction

Run-time Phase

Noise Reduction

Breathing 
Signal

500 Hz
 HPF

Frequency-based
Cycle 

Segmentation

Breathing Mode
Model Generation

Development Phase

Feature
ExtractionIn-ear Signal High-Quality

Frame Selection

Out-ear Signal

Trained 
Breathing Model

Noise
Detection

Yes

No

Processing Flow Noise Undetected Noise Detected

In-ear Signal

Phase-level
Breathing Mode

Fig. 2. The methodological pipeline of BreathPro.

• Development Phase: The goal of this phase is to develop trained machine learning (ML) models to detect
breathing modes. We start off by extracting frequencies that contain breathing-related information. As illus-
trated in Figure 1, the high-frequency component (high pass filtered with a cutoff frequency of 500 Hz) of the
in-ear signal shows distinct characteristics across different breathing modes. As the breathing sounds recorded
in the ear canal are considerably weak, we first adopt a frequency-based approach to segment the raw signal
into different breathing phases. To be more specific, the ground truth data recorded by an external microphone
placed on the philtrum is initially segmented by identifying the transitions between breathing phases, which
are represented by the valleys of the frequency-energy curve. Subsequently, the identified transitions are used
to segment the in-ear breathing signals recorded concurrently with the ground truth signal. We then extract
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Fig. 3. Spectrogram-based breathing phase segmentation process. (a) the raw ground truth breathing signal, (b) the high-pass
filtered ground truth breathing signal, (c) the spectrogram of filtered ground truth breathing signal, and (d) the energy curve
derived from the spectrogram, in which the valleys indicate transition intervals.

40 MFCC features over each frame of 100ms and slide through the entire segmented breathing phase (with the
hop length of 50ms). By carefully applying a series of techniques (explained in Section 4.2), the frames with
low quality (that are either polluted by spontaneous environmental noise or located at the transition between
adjacent phases) are eliminated. Afterward, the MFCC features of the remaining frames are labeled and fed
into an ML classifier for training, resulting in a model that can recognize different breathing modes.

• Run-time Phase: This phase focuses on classifying input signals into different breathing modes using the
pre-trained model, with techniques to minimize the influence of background noise such as traffic sounds.
Specifically, we first leverage the out-ear microphone to estimate the ambient noise level. If the noise level is
above a certain threshold, the noise reduction module (described in Section 4.3) will be activated for in-ear
noise cancellation with the aid of the out-ear microphone, where the core idea is to estimate the residual
noise in the ear and subtract it from the in-ear signal. Otherwise, the module will be bypassed and the filtered
breathing signal will be directly fed to the subsequent modules for frame-level segmentation, feature extraction,
and classification with the pre-trained model. Finally, as a breathing phase spans across multiple frames,
we propose a moving average scheme to smooth the frame-level classification results, obtaining a higher
phase-level accuracy.

4.2 Classification Model Development
4.2.1 Spectrogram-based Breathing Phase Segmentation: Although the breathing patterns are roughly seen from
the spectrograms presented in Figure 1, applying segmentation directly on the spectrograms of the in-ear signal
yields poor performance because (1) some breathing modes (nasal inhaling and nasal exhaling) produce weaker
breathing sounds and can be easily disrupted by environmental noise, and (2) the boundaries of the adjacent
breathing phases are vague and would result in inaccurate segmentation. Thus, in the model development phase,
we concurrently record the signals from another microphone placed near the nose to obtain the ground truth of
breathing phase. Figure 3 (a) and Figure 3 (b) compare the original ground truth signal and the high-pass filtered
breathing signal with a cutoff frequency of 500 Hz. As shown in Figure 3(b) and Figure 3(c), the inhaling and
exhaling phases present distinctive patterns and clear transitions (the change of frequency components and the
associated energy). The high-pass filter also eliminates other body-generated sounds such as footstep or heart
beat sounds as they mainly reside in frequencies lower than 100 Hz [15, 43]. Note that the ground truth data is
dedicated to breathing phase segmentation and annotation of th e in-ear signal, and will not be employed as
input for model training.

To segment the spectrogram of the ground truth signal, we conducted a Short-Time Fourier Transform (STFT)
on each five-second window to acquire its spectrogram expressed in decibels. We then sum up the energy across

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 71. Publication date: June 2024.



BreathPro: Monitoring Breathing Mode during Running with Earables • 71:9

all frequency bands to construct a frequency energy curve, as shown in Figure 3(d). Based on the observation that
there exists a silence period (no breathing) during the transition, we extract the valleys of the frequency energy
curve as the transitions between adjacent breathing phases. Then, we manually label the segmented phases as
inhalation or exhalation. Specifically, since the two phases occur alternately, we only need to identify the first
phase manually and the subsequent phases can be labeled based on the alternation. Finally, we apply the index
extracted from the ground truth signal to the in-ear breathing signal (extracted with a >500 Hz high-pass filter)
and segment it2.

4.2.2 Framing and Feature Extraction: To capture the fine-grained breathing mode information from the breathing
sounds, we extract the Mel-Frequency Cepstral Coefficients (MFCC) features that are designed to approximate the
human auditory system’s response at varying frequencies and has been widely used in diverse human-generated
sounds including speech, music, and breathing sounds [8]. Specifically, prior research has successfully used
MFCC for breathing event detection during running [31], COVID-19 detection using breathing sounds [10, 53],
as well as respiratory disease classification [48]. In detail, each segmented breathing phase is further split into
100 ms frames with 50 ms hop length using the slide window technique. 40 MFCC features are extracted for each
frame. We further compare the performance of MFCC against other features in Section 6.1.3.

Fig. 4. Distance matrix between the template and each frame of (a) a clean breathing phase and (c) a breathing phase with a
sudden noise. Frames with a distance greater than 50 from the template will be excluded.

4.2.3 High-quality Frame Selection: As mentioned earlier, there is a transition between inhaling and exhaling
phases, where the human does not perform any breathing or generate noticeable breathing sounds. Since our
current segmentation technique cannot exclude these transitions, some frames at the beginning and end of each
segmented phase may not represent the corresponding breathing modes, leading to low-quality features for
model training. Moreover, as shown in Figure 4(c), there might be spontaneous environmental noise occurring in
the middle of breathing.
To mitigate those low-quality and noisy frames, we propose a frame selection scheme. In detail, we first

generate a feature template by computing the average of MFCC features from all the frames in the current
2Note that the ground truth signal is only used during training to segment the in-ear breathing sounds, while is not needed during run-time
as we do not perform breathing phase segmentation and only use frames for classification.
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segmented phase. Specifically, with a frame length of 100 ms and 50 ms overlap, a single breathing phase (around
0.7 second) can be split into 15 frames for template computation. Then, we calculate the Minkowski distance
(p=2) of MFCC features between each frame 𝑖 and the template, i.e., 𝑑𝑖 (𝑖 = 1, 2, 3...). As exemplified in Figure 4,
frames with pure breathing signals have shorter distances to the template, while the transition frames (two ends
of Figure 4 (b) and (d)) and noisy frames (middle of Figure 4 (d)) show relatively larger distances. Afterward, we
compute the average distance (𝑑𝑎𝑣𝑔) of all the frames in current segmented phase. If the ratio |𝑑𝑖 − 𝑑𝑎𝑣𝑔 |/𝑑𝑎𝑣𝑔 is
higher than a certain threshold 𝛼 , frame 𝑖 is considered low-quality and will be excluded for model training. We
empirically set 𝛼 as 2 to retain high-quality frames and this design is able to handle the varying signal strength
(i.e. volume) of breathing sounds.

4.2.4 Model Training: The extracted and selected breathing features and their corresponding labels are utilized
to train a machine-learning model. Four commonly used ML classifiers, namely Support Vector Machine (SVM),
K Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF), are considered, and the evaluation
conducted in Section 6.1.1 will help identify the classifier with the best performance.

4.3 Run-time Breathing Mode Classification
As our breathing mode classification model is trained with clean breathing sounds and the in-ear breathing signal
is vulnerable to environmental noise, we introduce the out-ear microphone to deal with this issue at run-time.
Specifically, the out-ear microphone can be used for two purposes: noise detection and noise reduction.

4.3.1 Noise Detection: The out-ear signal is a combination of the runner’s breathing sound, the associated wind
noise, and other environmental sounds. Since breathing sounds are weak and the running-induced wind noise
exists all the time, the out-ear signal can be considered an approximation of the environment noise. Thus, we
compute the overall energy of the out-ear signal across different frequency bands and convert it to sound volume
in decibels (dB). If the noise level exceeds a certain threshold (e.g., 55 dB), BreathPro will activate the noise
reduction module to clean the noisy in-ear signal before segmentation. Otherwise, the noise reduction module
will be bypassed and the unprocessed breathing signal will be split into frames directly.

4.3.2 Noise Reduction: We observe a phenomenon that any external noise is firstly captured by the out-ear
microphone, subsequently modulated by the occluded ear canal cavity between the earbud and eardrum, before
finally being captured by the in-ear microphone. This indicates that there exists a correlation between the in-ear
and out-ear noise signals and inspires us to leverage the out-ear signal for in-ear noise reduction. Specifically,
our idea is to estimate the residual noise inside the ear using the out-ear signal and then subtract it from the
noisy in-ear signal to obtain clean in-ear breathing sounds. It is worth noting that, aside from external noise, the
out-ear signal may also contain faint air-conducted breathing sounds. As a result, the in-ear signal comprises
three components - bone-conducted breathing sounds, external noise attenuated by the ear, and air-conducted
breathing sound attenuated by the ear. During noise removal, BreathPro treats the two components in the out-ear
signal as a whole and removes both, which ensures that the in-ear signal still contains bone-conducted breathing
sounds for breathing mode classification.

To realize this idea, we first need to obtain the correlation between the in-ear and out-ear signals. A common
way is to develop a machine learning or deep learning model to learn such correlation automatically. However,
this method requires a large volume of data for model training and incurs high computation overhead during
inference. From Figure 1, we discovered that the two signals mainly differ in the energy distributions across
different frequencies, namely, the in-ear signal shows stronger energy at low frequencies and weaker energy at
high frequencies, compared to the out-ear signal3. Thus, we transform the out-ear and in-ear signals into the
3This is also supported by the occlusion effect that the low-frequency part of the in-ear signal is amplified and its high-frequency part is
suppressed [18].
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(a) (b)

Fig. 5. The scatter plot of (a) amplitudes and (b) phases for {out-ear, in-ear} pairs at 10 different frequency bands.

frequency domain using Short-Time Fourier Transform (STFT), and compute the amplitude and phase at each
frequency band.
Figure 5(a) and Figure 5(b) show the scatter plot of amplitudes and phases for {in-ear, out-ear} pairs at 10

different frequency bands. We observe linear correlations between the in-ear and out-ear signals in both amplitude
and phase plots at a single frequency band. Specifically, when the out-ear signal is stronger, the in-ear signal
also exhibits greater strength. This observation aligns with the fundamental sound propagation model, i.e.,
inverse-square law [26], which indicates that given the fixed distance between the in-ear and out-ear microphone,
the attenuation ratio is deterministic. As such, we leveraged a lightweight linear regression model to establish
mappings of {out-ear, in-ear} for each frequency band4. Specifically, we formulated a linear relationship between
the amplitude and phase of out-ear and in-ear sounds as represented by:

𝑆𝑖𝑖𝑛 = 𝑎𝑖 ∗ 𝑆𝑖𝑜𝑢𝑡 + 𝑏𝑖 , 𝑖 ∈ [1, 1024], (1)
where the superscript 𝑖 denotes the frequency band, and 𝑆𝑜𝑢𝑡 and 𝑆𝑖𝑛 denote the amplitude or phase of the

out-ear and in-ear sounds, respectively. We set the n_fft of STFT as 2048, therefore resulting 1024 frequency
bands. The right part of Figure 6 summarizes the flow to derive the in-ear and out-ear correlations, referred to as
Offline Coefficients Learning. Specifically, we first play a background sound with various frequencies and record
the in-ear and out-ear signals (named as template). Then, STFT is applied to both signals to obtain the amplitudes
and phases at different frequency bands, which are used to derive the coefficients with linear regression. Since
the coefficients derivation is based on the fundamental mechanism of sound propagation, it remains unaffected
by different breathing modes and noise conditions.
The pipeline for run-time noise removal is illustrated in the left part of Figure 6, referred to as Online Noise

Reduction. Figure 7 shows an example of the noise reduction performance at different stages. In detail, as
exemplified in Figure 7, when external noise is detected, we first apply STFT to the out-ear signal to obtain
its amplitude and phase values at different frequency bands (Figure 7(a)). Then, for each band, we computed
the transformed amplitude and phase using the derived coefficients with Equation (1) (Figure 7(c)). Afterward,
we subtract the transformed amplitude and phase from the corresponding in-ear noisy amplitude and phase
(Figure 7(b)), resulting in a clean in-ear breathing pattern (Figure 7(d)). Finally, we apply iSTFT to recover the
denoised in-ear breathing sounds5.
4Note that speaking will break the linear correlation as it influences the two microphones differently (i.e., through bone conduction for
the in-ear microphone and air conduction for the out-ear microphone). In our paper, we only consider the external noise that affects both
microphones via air conduction, as it is rare for a runner to engage in conversation during a run.
5Note that our noise removal method differs from existing active noise cancellation (ANC) technique in two aspects: (1) ANC aims to cancel
the noise heard by humans which usually needs to consider the primary path (from noise source to human ear drum) and secondary path
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Fig. 6. The flowchart of noise reduction module, including offline coefficients learning (right part) and online noise reduction
(left part).

Fig. 7. The noise reduction performance at different stages.

4.3.3 Signal Segmentation, Feature Extraction, and Classification: In the development phase, we segment the
breathing signal into different phases (inhaling or exhaling) with a strong reference signal from the nose. However,
no reference signal is available during run-time. Thus, we segment the breathing signal into frames with a length
of 100 ms using a sliding window (no overlap). For each frame, we extract the MFCC features and feed them to
the trained ML model for classification. As such, we can obtain a breathing mode estimation for every frame.

4.3.4 Moving Average Correction: In our run-time pipeline, multiple frame-level estimations might belong to
a single breathing phase. Based on the fact that the breathing mode (i.e., nasal or oral) remains unchanged
within a single phase, there is a chance to correct some wrongly-classified frames by considering adjacent frames.
Thus, we propose to leverage the moving average algorithm (with a window length of 10 frames) to smooth
the frame-level estimations. Specifically, as shown in Figure 8 (b), we found that applying the moving average
algorithm once can correct most of the spontaneous errors while failing to deal with consecutive errors. Thus, we
apply another moving average operation to the corrected estimations and this successfully corrects consecutive
errors, as compared between Figure 8 (c) and (d). Since breathing mode is defined for a single inhalation or

(from speaker to human ear drum) [68], while our method aims to eliminate the impact of external noise on a body-generated sound and
we only need to consider the path between out-ear and in-ear microphones; (2) existing ANC techniques usually applies different filters
to produce the anti-noise, while our solution leverage the mapping between in-ear and out-ear signals on different frequencies. Since the
mapping can be easily derived by recording both microphones’ signal simultaneously, our approach can adapt to personal characteristics
(e.g., geometry of ear) for improved noise removal performance.
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exhalation phase, reporting phase-level (i.e., aggregated breathing mode for a breathing phase) estimation is
sufficient and reasonable from the user perspective.

Fig. 8. The breathing mode of (a) predicted by BreathPro, (b) after first moving average, (c) after second moving average, and
(d) the ground truth.

5 PROTOTYPING AND DATA COLLECTION

5.1 Prototype
BreathPro only requires an in-ear microphone and an out-ear microphone, which have been equipped in many
commercial wireless earbuds such as Apple AirPods [1] and Huawei Freebuds [4]. Particularly, the in-ear
microphone is primarily intended for noise cancellation purposes, where the algorithms are executed on the
onboard audio chip for extremely small latency. Thus, the manufacturers usually do not release the API for
accessing the raw in-ear signal.
To address this limitation, we designed and constructed a pair of earbuds to evaluate our proposed system.

As shown in Figure 9(a), our customized earbuds comprise a 3D-printed shell and two analog microphones
(CMC-4015-40L100 by CUI Devices), with one placed near the earbud tip to capture in-ear sound (referred to as
the in-ear mic) and the other one integrated into the end of the handle to pick up out-ear sound (referred to as
the out-ear mic). Both microphones are connected to a Bela Mini development board through a 3.5mm audio jack,
which features an integrated development environment (IDE) for data recording. The Bela Mini board is then
connected to a Raspberry Pi so that the data can be collected remotely when the subjects are running. We set
the sampling rate to 8 kHz as human-produced sounds are usually below 4 kHz [46]. The participant wears the
earbuds and the rest the prototype components are powered by a power bank and placed in a small bag to be
carried during running, as of in Figure 9(b). Additionally, to ensure participant comfort during running, as well
as good sealing quality, we provide three different sizes of foam ear tips to fit various ear canal sizes. Since both
the in-ear and out-ear microphones struggle to capture a strong breathing signal with clear inhale and exhale
transitions, we attached another microphone (philtrum microphone) under each participant’s nose. Due to its
close proximity and direct contact with the breathing airflow, the collected audio can serve as ground truth for
breathing cycle segmentation.
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Fig. 9. (a) The customized earbuds prototype and accompanying data recording device, (b) illustration of a participant
wearing the device, and (c) flowcharts of breathing data collection.

5.2 Data collection
Upon receiving approval from the Institutional Review Board (IRB), we recruited a total of 25 participants,
comprising 16 males and 9 females, for large-scale data collection. The age range of the participants was between
23 and 31 years (mean = 26.72, standard deviation = 2.35). More than half of the participants engaged in regular
exercise, including fitness training or aerobic activities at least twice a week, while the rest engaged in exercise
less frequently. To account for real-world running conditions such as natural airflow, we conducted the data
collection on an outdoor rubber running track. The total duration of the data collection process was approximately
40 minutes. Figure 9(c) illustrates the flow of data collection and we provide a detailed description as follows.

Initially, each participant received a briefing about the study procedure and provided signed consent. Sub-
sequently, the participant wore the earbud along with other hardware components of the prototype in a bag,
with the assistance of the investigator. The formal data collection was comprised of four five-minute running
sessions, interspersed with two-minute break sessions to allow for rest and recovery. Participants were instructed
to perform pure oral breathing (i.e., OIOE) in the first two running sessions and pure nasal breathing (i.e., NINE)
in the last two sessions. Given that humans naturally adopt different breathing modes in various stages of the run,
participants were considered to have mastered each breathing mode and capable of performing them accurately
in the experiment. In addition, to label oral or nasal breathing, we assume the participants adhered to the provided
instructions and maintained a consistent breathing mode throughout each running session. To mitigate the
risk of discrepancies, we also collected feedback from the participants after each session. If they reported a
potential deviation from the instructed breathing mode, we manually examined the data and excluded incorrect
segments (this is achievable as oral and nasal breathing show distinct characteristics across different frequencies
as illustrated in Figure 1).

6 EVALUATION
Next, we evaluate BreathPro with the collected data, aiming to answer the following questions: (1) what accuracy
can BreathPro achieve in detecting the breathing mode? (Section 6.1.1, Section 6.1.2 and Section 6.1.3); (2) will
different combinations of inhalation and exhalation modes affect the performance? (Section 6.1.4); (3) how
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effective are the proposed techniques such as noise removal and error correction? (Section 6.1.5, Section 6.1.6); (4)
what performance of can BreathPro obtain in more realistic running scenarios? (Section 6.1.7); and (5) what is
the run-time overhead of BreathPro on smartphones? (Section 6.2).

6.1 Breathing Mode Classification Performance
6.1.1 Individual Model Performance: We make predictions for each respiratory frame, resulting in a series of
initial predicted labels, and further apply the moving average (MA) technique twice to mitigate spontaneous
errors. We refer to these as “frame-level classification”, and the accuracy after the second MA will be reported. In
practical applications, however, users may only need to know their breathing mode at a phase-level. Therefore,
we utilize the ground truth data to determine each breathing cycle and subsequently perform a majority voting
to determine the breathing mode for a particular breathing phase. We evaluate the performance with four typical
ML classifiers (KNN, SVM, RF, DT) and report the results for KNN only as it achieves the best performance.

(a) (b)

Fig. 10. (a) Overall breathing mode recognition performance of frame-level and phase-level classification, and (b) individual
performance of frame-level and phase-level classification.

As shown in Figure 10(a), the overall accuracy of the initial frame-level predictions stands at 75.59%, which is
sharply improved to 89.49% and 90.70% after applying the first and second MA, respectively. Additionally, the
phase-level accuracy is further improved and reaches an impressive value of 98.52%. Figure 10(b) presents the
individual performance of 25 subjects, considering both frame-level and phase-level classification. By combining
the insights from Figure 8 and Figure 10(b), several observations can be made. Firstly, it is evident that both
the first and second moving average effectively correct the majority of spontaneous errors, although they may
introduce slight shifts in transition points. Secondly, non-regular runners (e.g., subjects 3, 12, and 16) tend to
demonstrate better performance compared to regular runners. This can be attributed to the fact that non-regular
runners may not have developed the same level of muscle coordination and breathing techniques as regular
runners. Consequently, their breathing sounds are characterized by higher intensity, rapidity, and shallowness,
resulting in more noticeable and distinguishable patterns.

6.1.2 Performance of Leave-one-out Test. Having witnessed the superior performance of per-individual model,
in this section, we aim to focus on understanding the impact of individual differences (shape of the ear canal,
bone/tissue structure of human body, and respiratory sounds) in the prediction accuracy. To this end, in this section,
we use an user-agnostic model. More specifically, we employ the leave-one-out test, where 24 subjects are used for
training and the remaining one subject is used for testing, and iterate across all subjects. Figure 11 reveals variations
in performance across subjects. Despite an initial prediction accuracy of 69.9%, which drops approximately 6%
when compared to using individual models, the utilization of the first and second MA significantly lifts the
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accuracy up to 85.25% and 86.90%, respectively. Furthermore, the phase-level accuracy also reaches an remarkable
value of 96.44%, with only 2% accuracy drop. Although the breathing sounds from male and female subjects are
quite different (with females’ breathing sounds tending to contain more high-frequency components than males’),
their breathing sounds collected by in-ear microphones are less different as the occluded ear canal suppresses
high-frequency components and amplifies the low-frequency components. This may also suggest that breathing
signals among individuals recorded by our approach are more similar, allowing for the utilization of a general
model for analysis and prediction.

Fig. 11. Leave-one-out performance of frame-level and cycle-level classification.

6.1.3 Impact of Different Features. To substantiate the effectiveness of MFCC for fine-grained breathing mode
information extraction, we retrained the breathing mode classification model for each individual with different
features including (i) statistical features such as mean, median, root-meansquare, maximum, minimum, 1st and
3rd quartile, interquartile range, standard deviation, skewness, and kurtosis [14] ; (ii) Linear-Frequency Cepstral
Coefficients (LFCC) [76]; and (iii) Constant-Q Cepstral Coefficients (CQCC) [65]. Specifically, the MFCC employs
a Mel scale designed to mimic the human perception of pitch, offering higher resolution at lower frequencies
and coarser resolution at higher frequencies. In contrast, CQCC is grounded in the constant-Q scale, closely
mirroring the human cochlea’s response to various frequencies, as the cochlea is sensitive to frequencies in
a non-linear manner. Finally, LFCC utilizes a linear frequency scale, where frequency bins are evenly spaced.
This characteristic might be beneficial in specific applications that prioritize linear frequency features. Table 1
presents the average classification accuracy across 25 subjects based on these features at different stages of the
pipeline. We can observe that MFCC consistently outperforms other features in different stages, demonstrating
the effectiveness of our feature design.

Table 1. Performance comparison of different features at different stages.

Statistical LFCC CQCC MFCC
Predicted 42.91% 72.75% 69.94% 75.59%

After 1st MA 55.73% 88.57% 86.73% 89.49%
After 2nd MA 57.1% 88.47% 87.70% 90.70%
Phase-level 59.35% 94.20% 92.79% 98.52%
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6.1.4 Impact of Different Inhalation and Exhalation Sequence. Due to constraints in terms of time and the
participants’ physical stamina, we were only able to collect data on two combinations of breathing patterns: oral
inhalation and exhalation (OIOE), as well as nasal inhalation and exhalation (NINE). However, there are two
additional possible combinations of breathing patterns, namely oral inhalation with nasal exhalation (OINE) and
nasal inhalation with oral exhalation (NIOE). The acoustic features of respiratory sounds may be influenced by
different combinations of breathing patterns. For example, OIOE can maintain an open mouth position, while
OINE may result in repeated opening and closing of the mouth, leading to different oral inhalation sounds.

Table 2. Phase-level performance of different inhalation and exhalation combinations.

Training OIOE+NINE OINE+NIOE OIOE+NINE+OINE+NIOE
Testing OIOE+NINE OINE+NIOE OIOE+NINE OINE+NIOE OIOE+NINE OINE+NIOE

S1 95.53% 88.19% 87.24% 96.57% 96.72% 94.13%
S2 93.10% 86.67% 86.97% 92.84% 93.27% 92.31%
S3 95.32% 88.83% 89.46% 93.6% 95.7% 95.47%

S1+S2+S3 90.81% 84.51% 83.83% 90.48% 91.8% 91.77%

To examine how different combinations of breathing patterns affect classification performance, we conducted
an experiment in which three participants applied all four possible breathing combinations while running.
Table 2 presents the classification performance achieved by extracting oral inhalation (OI), oral exhalation (OE),
nasal inhalation (NI), and nasal exhalation (NE) from the OIOE and NINE combinations, the OINE and NIOE
combinations, as well as all four breathing combinations as separate training data. The performance was then
tested on OIOE and NINE, as well as OINE and NIOE as test data. Table 2 shows that respiratory features extracted
from only two combinations cannot be directly applied to the other two combinations. The accuracy decreases
by more than 6% when classifying data from the untrained combinations. However, such degraded accuracy of
>85% is already good enough for real-world deployment. Furthermore, if all four combinations are included in
the training data, negligible accuracy loss is presented for all test data, as illustrated in the rightmost column.

6.1.5 Performance with different ambient noise levels. Although earbuds can attenuate some external noise natu-
rally, making in-ear signals more resistant to external noise than out-ear signals, excessive environmental noise
may still interfere with respiratory sounds. In order to examine the influence of different levels of environmental
noise on respiratory classification performance, we utilized a speaker to play pre-recorded traffic noise at various
volumes, simulating a scenario in which a runner is exercising outdoors along a road.

Table 3 presents the performance results for three subjects in both the noisy and noise-reduced conditions.
From the first column, it can be observed that despite the use of earplugs to attenuate external noise, the noise
still dominates compared to the faint breathing sounds. Consequently, this leads to low accuracy in the initial
frame-level predictions, with over half of the classifications being incorrect at higher noisy levels (e.g., 80dB).
Additionally, the application of moving average not only fails to correct these errors but may actually increase the
number of misclassified frames. Therefore, noise reduction is deemed necessary in such a scenario. By comparing
the third (original) and fifth (noise-reduced (individual template)) column of Table 3, we can observe that our
noise-reduction scheme can significantly improve the performance by up to around 40% depending on the noise
level.

Our noise-reduction approach relies on an occluded ear canal to obtain the correlation between the in-ear and
out-ear signals. However, as mentioned by [28, 33], the shape of the ear canal of each individual is unique and
this distinction can even be utilized for authentication purposes. To investigate whether these inter-individual
distinctions would impact the noise-reduction effectiveness, we further conducted the following experiments.
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Table 3. Phase-level performance with different ambient noise levels.

original noise-reduced
(general template)

noise-reduced
(individual template)

S1

quiet 95.53% NA NA
60dB 79.72% 83.63% 91.32%
70dB 65.20% 75.35% 87.44%
80dB 42.13% 71.81% 81.94%

S2

quiet 93.10% NA NA
60dB 70.80% 79.82% 89.18%
70dB 57.65% 73.16% 88.50%
80dB 39.40% 67.33% 85.12%

S3

quiet 95.32% NA NA
60dB 78.12% 81.45% 91.96%
70dB 61.41% 75.49% 87.42%
80dB 51.90% 68.80% 85.27%

Specifically, three subjects are examined under different noise levels using their own personalized templates
(previously generated) and a general template (averaged from the templates of the three individuals) for noise
reduction. From the fourth (noise-reduced (general template)) and fifth (noise-reduced (individual template)) column
of Table 3, it is evident that using the individualized template for noise reduction significantly improves the
accuracy. In detail, under the 60 dB, 70 dB, and 80 dB noise levels, the average accuracies reach 90.82%, 87.79%,
and 84.11%, respectively. In contrast, using the general template yields lower accuracies of 81.63%, 74.67%, and
69.31%, respectively. Therefore, we recommend users generate their own personalized noise reduction templates
for better breathing classification performance. The overhead of generating the individual template is minimal as
it only requires playing a simulated sound of around 10 seconds and performing linear regression.

6.1.6 Performance with different ambient noise types. To evaluate the robustness of our noise reduction scheme
in various ambient noise environments, we conducted additional experiments with three individuals. Specifically,
each participant wore the prototype and ran while holding a smartphone nearby. The smartphone was playing
different types of noise on YouTube including traffic noise, crowd conversation, and popular music from the
Billboard Top 50 of 2023, each at a noise level of approximately 70dB. In Table 4, we show both the frame and
phase-level accuracy averaged across the three participants. We observe that BreathPro can successfully remove
various ambient noises and achieved an overall phase-level accuracy exceeding 85%, in classifying breathing
modes. Our noise reduction scheme demonstrates a notable improvement, enhancing phase-level accuracy by
more than 20% compared to the case without noise removal.

Table 4. Performance comparison of different ambient noise types at different stages.

Traffic Crowd Music
original noise-reduced original noise-reduced original noise-reduced

Predicted 43.17% 62.53% 42.93% 63.90% 41.25% 60.27%
After 1st MA 53.23% 77.80% 52.77% 79.67% 50.01% 75.27%
After 2nd MA 55.60% 79.50% 55.30% 81.60% 52.50% 77.60%
Phase-level 65.20% 87.44% 64.02% 89.25% 61.27% 85.51%
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6.1.7 In-the-wild Test: To evaluate the performance of BreathPro in more realistic running scenarios, including
uncontrolled breathing modes and prolonged running times, we conducted in-the-wild experiments with three
regular runners in two distinct scenarios. In the first scenario, a single participant wore our prototype and ran
freely and continuously for 40 minutes along a city sidewalk (with both hard and rubber surfaces) surrounded by
conversations of crowds, traffic sounds, and other environmental noises, at around 60 to 70 dB. The subject jogged
at a speed of 10km/h in the first 30 minutes, then started to accelerate at 30-33 minutes, and finally stabilized at
15km/h after 33 minutes. During the first 30 minutes, the subject adopted the breathing mode of NINE due to the
moderate running intensity. In the acceleration phase, the subject gradually began to exhale through the mouth
(i.e., NIOE) and finally breathed completely through the mouth (i.e., OIOE) at the sprint stage. The subject is a
regular runner and is able to maintain the instructed breathing mode at different stages, ensuring the reliability of
labels. In the second scenario, another two subjects jogged at a self-selected pace (subject 2: 9.67-11 km/h; subject
3: 7.69-9.27 km/h) and employed any breathing modes they preferred throughout a 30-minutes running session.
An additional philtrum microphone was attached to assist ground truth annotation, and a running application
was utilized for monitoring the running speed.

Fig. 12. In-the-wild longitudinal breathing mode monitoring of three subjects. Colored boxes represent different running
speeds over time, with a deeper color indicating a higher running speed (subject 1: 10-15 km/h; subject 2: 9.67-11 km/h;
subject 3: 7.69-9.27 km/h). The percentages in sub-figures represent the portion of breathing phases classified as oral (red
lines) or nasal (green lines) during inhalation (a, b, c) and exhalation (d, e, f) within a 30-second window.

Figure 12 illustrates the breathing mode tracking performance of BreathPro in the in-the-wild longitudinal test
of three subjects. Figure 12 (a) and (d) correspond to the first mentioned scenario, and the remaining sub-figures
depict the second scenario. The red and green solid lines in the sub-figures represent the percentages of breathing
phases classified by BreathPro as oral and nasal within a 30-second window, while the red and green dotted lines
indicate the ground truth of the breathing mode. It is evident that BreathPro accurately tracks the transitions of
breathing mode in both inhalation and exhalation with the pre-trained model. Notably, compromised tracking
performance is observed during the acceleration stage for subject 1 in Figure 12 (a) and (d), and the reason is
that the breathing combination of NIOE is not included in the model training, as explained in Section 6.1.4. We
believe the performance would be improved once all the breathing combinations are involved during training.
Furthermore, while each participant has their preferred breathing style, such as NINE for subject 2 and OINE for
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subject 3, it may shift with increased running distance due to the demands of gas exchange or the accumulation
of fatigue. In the case of these two subjects, the prediction accuracy in the latter half of the session is lower than
in the first half. This could be attributed to two factors: 1) a gradual shift in breathing modes, potentially even
involving two types (oral and nasal) of exhalation simultaneously, and 2) as stamina diminishes, maintaining clear,
singular breathing patterns close to the training data becomes challenging, leading to degraded classification
results. In summary, the average phase-level accuracy of these three subjects is 89.93%, indicating the effectiveness
and robustness of BreathPro in realistic scenarios.

6.2 System Performance
Since all the existing earphones are paired with a smartphone using Bluetooth, we implement BreathPro as
an Android application and evaluate its system performance based on Xiaomi 13 which is equipped with a
Snapdragon 8 Gen 2 processor and a battery with 4500 mAh capacity. The breathing mode pipeline is segmented
into five stages. Firstly, the pre-processing stage applies a high-pass filter. The subsequent steps, namely noise
detection and noise reduction, are responsible for detecting whether the external noise exceeds a threshold and
utilizing pre-generated {in-ear, out-ear} amplitude and phase templates to remove external noise from the in-ear
microphone. The feature extraction stage generates MFCC features at the frame level. Lastly, the prediction of
breathing mode and the double-moving average constitute the post-processing stage.

We evaluate the CPU load and latency by executing a specific portion of the code looping 1000 times, repeating
this process five times, and calculating the average value of the five iterations. To assess battery usage, we
measure the power consumption of a specific code segment by running it in the background for one hour while
the screen is turned off. We then subtract the power consumption during this period from the power consumption
during one hour of idle standby, yielding the power consumption specifically attributed to the code segment.
Table 5 presents the system performance of BreathPro based on the processing of a one-second data. We can
observe that the proposed breathing mode recognition pipeline can be completed within 84.44 ms respectively,
guaranteeing real-time detection. The CPU load is low at around 5%. In terms of power consumption, we convert
the measurements to battery usage (%/hour), and our results indicate that the task consumes about 1.1% battery
capacity separately when processing one-hour data, which is similar to typical smartphone applications such as
music player (2%/hour). All the results reveal the lightweight design of our classification pipeline, ensuring that
the system does not burden the mobile device and can operate for extended periods without draining excessive
battery power.

Table 5. System performance of RunCoach, executed on Xiaomi 13 (battery capacity of 4500mAh) to process one-second data.

Pre- Noise Noise Feature Post- Overallprocessing Detection Reduction Extraction processing

Breathing

CPU (%) 3.3 3.7 5.6 5.2 6.2 -
Latency (ms) 0.34 0.19 64.12 2.57 17.22 84.44
Energy (mAh) 0.0001 0.0001 0.0321 0.0013 0.0108 0.0444

Battery Usage (%/hour) 3 3 4 4 5 1.13

7 DISCUSSION AND FUTURE WORK
Generalizability to other scenarios: The fundamental idea of BreathPro is to identify breathing modes using

the in-ear microphone on earables. Although we showcased its feasibility and performance during running, the
concept and effectiveness can be extended to other vigorous-intensity exercises that generate distinct breathing
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sounds, such as cycling, racewalking, hiking uphill, etc. It is crucial to note that if an activity generates slow and
weak breathing sounds, the performance of our approach may be considerably compromised and may even fail.

Breathing rate estimation: As shown in Figure 8, after applying the second moving average, we can clearly
identify the start, end, and duration of each breathing phase. By counting the number of breaths within a specified
period of time, the respiration rate can also be derived. Note that two breathing phases constitute one breathing
cycle. Thus, we compute the respiration rate for each participant, obtaining an average mean absolute error of
1.88 breath per minute (BPM), which is comparable with existing approaches [9]. The result demonstrates the
feasibility and superior performance of deriving breathing rate based on breathing mode estimation.
Impact of running speed: Different individuals or the same runner at different running stages can run

at different speeds, and the running speed is often positively correlated with the breathing rate. As shown
in Figure 12, running speed has minimal impact on our breathing mode detection, which is attributed to the
frame-level classification of BreathPro. More specifically, the breathing speed only affects the number of frames in
a single phase (more frames at lower speeds, and vice versa), while the phase-level accuracy relies on a majority
vote of all the frames. Even at a high breathing rate of one cycle per second, there are nine frames within a phase,
allowing spontaneous classification errors to be easily corrected.
Impact of music playback:While earphones are commonly used during running, their primary function

is music playback. This raises concerns about simultaneous music playback and breathing mode detection, as
the captured breathing signals may be overwhelmed by the music. One potential solution is to employ source
separation algorithms to extract the breathing sounds from the distorted signal, given that the delivered sound
is known from the earphone system. However, this approach requires careful consideration of the frequency
responses of the speaker and microphones, necessitating further engineering exploration such as automatic gain
control. Additionally, in the presence of environmental noise, the impact of music on the in-ear and out-ear
microphones may differ, warranting further investigation into their correlation.
Development of a user-invariant model. Because the shape of the ear canal, bone/tissue structure, and

breathing sounds of different users vary, the frame-level and phase-level accuracy of the leave-one-out test (i.e.,
user-invariant model) drops 6% and 2% respectively, compared to those of individual models. In the current
BreathPro, we only extract basic MFCC features and classify breathing modes with a KNN model. In the future, it
would be promising to develop a more accurate user-invariant model by augmenting the collected breathing data
and training a deep neural network for classification.

Feedback delivery methods: We delve into the future prospects of our system, particularly focusing on the
user-friendly delivery of feedback regarding breathing modes during running. We are considering innovative
approaches that prioritize the convenience and preferences of runners. One such approach is the provision of
post-run summaries, which offer comprehensive reports after each running session. These summaries allow
runners to analyze their breathing patterns in detail, without any interruption during their activity. Another
promising direction is the development of customizable notifications. This feature would empower users to
personalize how and when they receive feedback, thereby minimizing any potential disturbance to their running
experience. These potential delivery methods represent key areas of our future work, aiming to enhance the
practicality and effectiveness of our system for runners.
Tidal volume estimation. Tidal volume refers to the amount of air that is inhaled or exhaled during a

breathing cycle. It is of great importance in analyzing the pulmonary function, which would in turn be used
to understand the running efficiency and refine the breathing strategy during running. However, tidal volume
is usually measured with a special equipment at controlled conditions and accurately measuring it in the wild
seems to be impossible. Based on the observation that breathing sounds show varying characteristics, such as
intensity, frequency, and duration, at different breathing modes, an interesting future direction is to estimate the
tidal volume using in-ear breathing signals.
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Transplantation to commercial earbuds. We developed our own prototype because commercial man-
ufacturers typically do not release APIs for accessing the raw in-ear signal. The customized prototype does
not contain any special signal processing circuit, while simply connecting a microphone to the audio codec
for recording. Thus, we believe the fundamental concept of BreathPro is likely to be applied on commercial
earbuds. Moreover, our device is wired, which may introduce additional noise during running (e.g., rubbing with
clothes or human skin), implying a potential performance improvement on wireless earbuds. However, different
earbuds may feature microphones with varied physical layouts, diverse frequency responses and amplification
ratio, potentially influencing our noise reduction scheme. Therefore, we recognize that it might require more
investigation before deploying our system on commercial earbuds.

8 CONCLUSION
In this paper, we present a novel earbuds-based system, named BreathPro, for breathing mode monitoring
during running. Employing a microphone to record the in-ear sounds, BreathPro first extracts signals related
to human breathing with a high-pass filter. Then, BreathPro adopts a well-designed signal processing pipeline
and ML-based classification scheme to recognize runners’ breathing modes. In addition, BreathPro exploits the
out-ear microphone to mitigate the noise in the breathing sounds captured by the in-ear microphone, thereby
improving the performance and robustness of breathing mode detection. With data collected from 25 subjects,
we experimentally demonstrated the superior performance of BreathPro, namely, 98.52% phase-level accuracy for
breathing mode recognition. We also implemented BreathPro as a smartphone application and demonstrated its
lightweight property with power and latency measurement.
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